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Abstract

In this paper a new modeling methodology to characterize failure processes in Time-Sharing
systems due to hardware transients and software errors is summarized. The basic assumption made is
that the instantaneous failure rate of a system resource can be approximated by a deterministic
function of time plus a zero-mean stationary Gaussian process, both depending on the usage of the
resource considered. The probability density function of the time to failure obtained under this
assumption has a decreasing hazard function, partially explaining why other decreasing hazard
function densities such as the Weibull fit experimental data so well. Furthermore, by considering the
Kernel of the Operating System as a system resource, this methodology sets the basis for
independent methods of evaluating the contribution of software to system unreliability, and gives
some non obvious hints about how system reliability could be improved. A real system has been
characterized according to this methodology, and an extremely good fit between predicted and
observed behavior has been found. Also, the predicted system behavior according to this methology
is compared with the predictions of other modeis such as the exponential, Weibull, and periodic
failure rate.
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INTRODUCTION

1. Introduction

Fault-tolerance is the attribute which aliows the system to continue with its program-specific
behavior after the occurrence of a failure. As reported in [Avizienis 78], full fault-tolerance is currently
. found only in a few systems which have exceptionally strict reliability or availability requirements, The
benefits of fault-tolerance are nat yet available to the great majority of users. [Avizienis 78) proposes
: five near term goals to correct this situation : ’

1. Acceptance of fault-tolerance as an attainable and desirable attribute of computing
systems.

2. Development of cost and benefit measures

3 Deweloprhent of fauit-tolerance specifications and acceptance tests

4, Creation of experimental systems
§, Advanced research in fault-detection, recovery, and modeling techniques

; The work presented in this report describes some new results refating to points 2, 3, and 5 sbove
? and proposes further research to be done to completely characterize a new modeling methodology.
: This methodology gives quantitative relationships between performance, workload, and (lack of)
reliability for digital computing systems. Current methodologies for reliability assessment may provide
good modaeis for explaining and predicting the behavior of systems in the presence of hard (recurrent)
1 : faults, but the effect and charcterization of transient (non recurrent) faults and software (either design
' or implementation) errors is still very elusive. These current reliability measures, while useful for
system design trade-offs, do not give individuai users a feeling of the impact of unreliability on

performance in general purpose system operating under a variety of workicads. That is, there are no

general methods for a quantitative assessment of the benefits of fault-tolerance. Also, there are no

system independent methods of evaluating the relative importance. of software in the unreliabiiity of

: the total system. And this problem is particularely important given the constantly raising fraction of

[ software development in the cost of computing systems. Finally, if reliability is postulated to be

f‘ workload dependent, different uses of a given system may lead to different reliability predictions.
Sections 1-2 thru 1-4 investigate these issues in more detail, while introducing a proposed
methodology. First, let us examine some basic definitions.
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2 WORKLOAD, PERFORMANCE, AND RELIABILITY OF DIGITAL COMPUTING SYSTEMS

1.1 Definitions

The following concepts need to be precisely defined :

Hardware Fault  Erroneous state of hardware due either to failures of components or to physical
interference from the environment.

Hardware Error  Manifestation of a hardware fault within a program or data structure. ‘

Permanent Hardware Faulit
Hardware fault which is continuous and stable, reflecting an irreversible physical
change in the hardware.

Transient Hardware Fauit
Hardware fault due to temporary environmental conditions.

Software Fault Imperfection in the design or implémentation of a software module such that upon
some timing or value conditions in its input data stream it fails to accomplish its
designed task.

Software Error Manifestation of a software fault within a program or data structure.

System Failure Manifestation of software or hardware errors that force an entire computing
system to suspend its operation.

Since no repair takes place after system failures due to software faults or transient hardware fauits,
the time of system failure is essentially equal to the system restart time. Since this report is concerned
solely in modelling hardware transient faults and software fauits, the words "system failure” and
"gystem restart” will be used interchangeably to describe the same event in time.

1.2 The problem of Characterizing System Reliability

Faulit-tolerance has traditionally been characterized by relatively simple functions based on strict
assumptions. The Religbility function R(t) is defined as the probability of uninterrupted operation up to
time t given that all hardware was correctly operating at time t=0. R(t) may be used to characterize
either permanent or transient fauits. The usual assumption is madsnthat the failure rate is constant
and, for nonredundant systems the reliability function becomes e , where A is is the sum of the
failure rates of all the components in the system. A very common quantitative measure is the Mean
Time To Failure (MTTF)

(> <]
MTTF-/ R(t) dt (1.1)
0
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INTRODUCTION 3

The popularity of the MTTF stems mainly from the fact that, for nonredundant systems, it is easily
estimated by dividing the time a system is operational by the number of failures reported. Other
reliability indices used to compare two systems A and B, are the Reliability Improvement factor (RIF)

{Anderson 67]

1-R
RIF = R/ \ ' (1.2)
1’RB(°

and the Mission Time Improvement Factor (MTIF) [Bouricious 69}

T
MTIF = ;:- when R,(T,) = Rg(Tg) = R (1.3)

which are useful only when the system under study must be available for a predetermined period of
time T called "mission time".

The concept of coverage [Bouricious 69] is defined as the conditional probability of successful
recovery, given that a fault has occurred. Aithough mathematically attractive, coverage has proven to
be very difficult to estimate for real systems. Finally, if the Mean Time To Repair (MTTR) is aiso
known, an estimate of the system usefuiness given by the Avaiflability

A= DITE __ , (1.4)
MTTF + MTTR

These and other measures traditionally used to compare systems do not take into account the
performance of the system whose reliability is being measured. Consider Table 1-1 which fists the
resuits obtained from seven different experiments whose goal was explicitly to gain experience on
systems reliability. Data for the first system [Yourdon 72], was obtained from a summary of failure
statistics on a Borroughs 5500 over a 15 month period starting in April of 1969. Limited information
about the cause of each failure is available. For instance, one of the categories includes system
failures due to unexpected (/O intercepis. These failures are recorded whenever the software
responds to an interrupt signifying that some 170 action has taken place, but discovers that it has no
record of having initiated such action. It is thus an indication of some form of hardware or software
error but the particular cause for the failure (hardware or software) remains unknown. The data for
the second system was reported in [Lynch 75] and comes from the first thirteen months of operation
of an operating system called Chi/OS for the Univac 1108 developed by the Chi Corporation between
1970 and 1973. No explanation is given about how such an accurate decomposition of failures due to

A
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WORKLOAD, PERFORMANCE, AND RELIABILITY OF DIGITAL COMPUTING SYSTEMS

hardware and software could be obtained. [Reynolds 75] reports data obtained from a dual IBM
3707165 at Hughes Aircraft Company over a period of three years installed to handie a mixed batch
and time sharing load. The forth system is at the Stanford Linear Accalerator Center (SLAC) where
the main workioad is processed as multi-stream background batch. The system consists of a
foreground host (IBM 370/168) and two background batch servers (1BM 370/168 and IBM 360/91).
The architecture is designed to be highly available and reconfigurable. The CMU-10A is an ECL POP-
10 used in the Computer Science Department at Carnegie-Mellor. University. The data for the CRAY-1
was reported in [Keller 76], and the data for the three generic UNIVAC systems was reported in
[Siewiorek 80].

Table 1-1.gives, when availabie, a Mean Time to reStart (MTTS) value in hours (that is, the Mean
Time to System Failure), a Mean Number of Instructions to Restart (MNIR) which is an estimate of the
mean number of instructions executed from system start up until system failure, and the percentages
of system failures that were caused by hardware faults, software faults, and whose cause could not be
resolved. The information about execution rates needed to compute the MNIR value was obtained
from .[Phister 79]).

3 Obviously, the figures shown in Table 1.1. do not carry much information. A MTTS figure alone does
not tell the impact of unreliability an system use. Compare for example the CRAY-1, [Russell 78], with

1 the CMUA, [Bell 78a]. Although the CRAY-1 crashes twice as often as the CMUA, it can operate
j continously at rates above 138 Million Instructions Per Second (MIPS), while the CMUA operates at
~10'2 instructions between crashes. Inconsistancies like this one suggest that reliability madelling

j

E 1.2 MIPS. Hence the CMUA executes ~10' instructions between crashes while the CRAY-1 executes
)

J

and measuring should be closely related with the characterization of the performance of the system
under study. Integrated performance-reliability models have already started to appear in the
literature. in [Meyer 79], a performance measure called "performability” gives the probability that a
system performs at different levels of "accomplishment”. In [Gay 79], systems are modelled with
Markov processes in order to estimate the probability of being in one of several capacity states. This is
a similar approach to the one pravioulsy taken in [Beaudry 78}, where the concept of "computation
p reliability” was introduced as a measure whicii takes into account the computation capacity of a
i system in each possible operationa! state. Finally, a Performance/Availability model for gracefully
i

degrading systems with critically shared resources is given in [Chou 80).

However, most of the above models have been developed mainly for hard failures, that is, stable
failures that reflect an irreversible physical change in the hardware. Unfortunately, as it has been
repeatedly reported ( [Fuller 78], [McConnel 79a)}, [Morganti 78}, [Siewiorek 78], [Ohm 79]), transient
failures cccur at least an order of magnitude mare often than hard failures. A cost effective analysis
should then consider transients as the main reason for system unreliability.




et i

-
l

e T e U it

(RN am e v e © ot it @ e e s e e o A I R - 05 e v e sttetitmre 1 o e e o o e
INTRODUCTION 5
System MTTS (hours) MNIR % HW % SW % Unknown
B 5500 147 2610 393 8.1 52.6
Chi/05 17 6.7 107 45 55 .
_' {Univac 1108)
| dual 8.6 28 10" 65 ) 3
370/168
SLAC 20.2 2.3 10" 733 218 5.1
CMU-10A 10 4310" . . .
CRAY-1 -4 1.9 10" . . .
UNIVAC 51 42 7
(Large)
UNIVAC 57 41 2
{Medium)
UNIVAC 88 9 3
(Small)
Table 1-1: Reliability experience of saveral comercial systems.
MTTS is the Mean Time to reStart. MNIR is the Mean Number of ‘
Instructions to Restart. :
3 ' Simultaneoulsy with the develcpments described above, qualitative relationships between workioad -
and unreliability have also been noted. The results published in [Beaudry 79] suggest a strong
‘ dependency between workioad and reliability of digital computing systems. And in the paper by
[Butner 80], this dependency is stated expilicitly claiming that a periodic, workioad-dependent tailure |
rate is more appropriate to characterize the reliability of time-sharing systems than the classical * ¥
constant failure rate model traditionally used. As reported in [Castillo 80), if such a dependency is

taken into account it is possible to characterize the performance of digital computing systems
considering reliability as an inherent attribute.
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1.3 Software Reliability

The problem of software reliability assessment is part of the more general area of softwaié quality
assessment [Mohanly 73]. Effective machanisms for measuring software quality are required due to
the high cost of software development and maintenance. By 1985 forecasts indicate that over 80% of
the total computing dollars spent annually will be for software [Horowitz 75]. The development of
techniques for measuring software reliability has been motivated mainly by project managers that
need both ways of estimating the man-power needed to develop a software system with a given level
of performance and techniques to detect when this level of performance has been reached. However,
most software reliability models presented up to date are still far from satisfying these two needs in a
general context.

Software reliability modeis can be roughly grouped in four categories. The first category would
include models formulated in the time domain. These models attempt to relate software reliability
(characterized, for instance, by a MTTF figure under typical workload conditions) to the number of
bugs present in the software at a given time during its development. Typical of this approach are the
models presented in [Shooman 73], [Musa 75], and [Jelinsky 73]. Bug removal should increase MTTF
and correlation of bug removal history with the time evolution of the MTTF value may aliow the
prediction of when a given MTTF value will be reached. An example of the application of time domain
models to the development of a real-time system is given in {Miyamoto 75). The main disadvantages
of time domain models are that bug correction can generate more bugs, and that software unreliability
can be due not only to implementation errors (bugs) but aiso to design (specification) errors.

Another approach to software reliability modeling is based on studying the data domain. The first
model of this kind is described in [Nelson 73]. In principle, if sets of all input data values upon which a
computer program can operate are identified, an estimated of the reliability of the program can be
obtained by running the program for a subset of input data values. A more detailed description of data
domain techniques is given in [Thayer 78]. In the paper by [Schick 78] the time domain and data
domain modeis are compared. However, different applications will tend to use different subsets of all
possible input data vaiues, "seeing" different reliability values for the same software system. This fact
is formally take into account in [Cheung 80), where software reliability is estimated from a Markov
model whose transition probabilities depend on a user profile. Techniques for evaluating the
transition probabilities for a given profile are given in [Cheung 75].

The third category includes models in which software reliabiiity (and software quality in general) is
postulated to obey certain laws [Ferdinand 74), [Fitzsimmons 78]. Aithough such modeis have
generated high amounts of interest, their genera) validity has never been proven and, at most, they
only give a figure for the number of bugs present in a program.
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Finally, there have been some attempts to characterize total system reliability (hardware and
software) in [Costes 78], modelling of fault-tolerant software (through module duplication) in [Hecht
76], and warnings about how not to measure software reliability [Littlewood 79).

What all the above models have in common is that none of them characterizes system behavior
accurately enough as to give to the user a figure of guaranteed level of performance under general
workload conditions. They concentrate in estiméting number of bugs present in a program but do not
give any accurate method to characterize and measure operational system unreliability due to
software. There is a wide gap between the varaiables that can be easily measured in a running
system and the number of bugs in its operating system. However, a cost effective analysis should
precisely allow to evaluate the impact of software unreliability from variables easily accessible in an
operational system, without knowing the details of how the operating system has been written.

1.4 Measuring Reliability under typical and atypical conditions

The assumption here is that reliability is a performance attritbute in the sense that a lack of
reliability increases the expected value of the system response time. If such a relationship can be
derived in a general context, policies and/or design parameters could be used to optimize the
ultimate system performance. In this report, the approach taken is that fgjlure rate time variations

should closely follow workload time variations. Intuitively, the dependency between workload and lack
of reliability can be explained quite easily. Assume that we have a constant failure rate for the primary

memory of a digital computing system operating in a stable environment under a time sharing policy.
That the transient failure rate in a memory is constant is a reasonable assumption. There is
justification for thinking that certain complex devices might follow an exponential failure law ( [Bariow
65], pp 18-22). The physical characteristics of the memory IC's do not change with time (at least
during the effective life cycle of modem digital computing systems). We have to look then for the
origin of these transients either in external sources, such as radiation, the presence of noise (possibly
impulsive) in the power supply or in the limitations of the manufacturing process. In fact, it has been
reported in [Geithofe 79] that MOS memory devices exhibit non recurring bit failures caused by Alpha
particles emitted from small amounts of radioactive elements present in IC packaging material. The
failure rate for this kind of failures is of course constant. Assume now that a transient memory failure
has higher probability of leading to a system crash when the central processor is executing in Kernel
mode than when it is executing in user mode. A memory failure when the CPU is executing in user
mode may affect a user process but will not crash the system. The gystem failure rate due to transient
memory failures will then depend on the ratio of the number of memory references while in Kernel
mode to the total number of memory references per unit time. Since it is a well known fact that
operating system overhead increases with workioad, the previous ratio will also be a nondecreasing
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function of the system workload, increasing in turn the observed system failure rate. The result is that
the observed system failure rate due to transient memory failures should be equal to the sum of a
component following the operating system ovehead variations in time (or indirectly, workioad
variations in ime), plus a constant, workload independent component (even if the system ig idle, there
may still be memory errors that corrupt, for instance, the clock interrupt subroutine).

Even if the fact that a computing system is not always equally sensitive to the presence of hardware
errors is not considered, there are still arguments to support the idea that the apparent system failure
rate should depend on the workload. The fact is that in most computing systems, a component failure
will be noticed only if the component is "exercised”. A time sharing system with no load, spending
most of its time in a wait state and only a fraction of the time executing the clock interrupt routine may
sustain several failures and still not report any errors if the minimal hardware configuration required to
execute these basic functions is not affected. It is not maintained here that failures will be caused by
increased utilization (although in some cases this situation is certainly possible) but that they will be
detected by an increase in system utilization. This effect has also been referred to as "error latency”
[Shedletsky 73].

Analogous arguments lead to the expectation that the rate of system failures due to software
unreliability will depend on how much the software is exercised. System software failures are due to:
a) the (static) input data to a progam module presents some peculiarities that the program is not able
of handling or, b) the software is not capable of handling some time dependent (dynamic) sequence in
the input data stream. in the case of a time sharing system, the only software capable of provoking a
system failure is the Kernel of the Operating System. This software usuaily executes in a privileged
processor state and a software error that corrupts some critical information in the Kerne! data
structures may lead to a system failure. However, since nobody has any a priori knowledge of what
these errors are, it is less likely that the system finds one of these combinations in its input stream
under low load (that is, small amounts of input data to process per unit time) than in a high load
situation. Again, the observed system failure rate has to depend on the system load. Furthermore,
upon correct system operation, a user program is restricted to access any resource for which it has
not been given explicit permission by the kernel. Hencae, it is not necessary to worry about the effects
of user programs. Unfortunately, a mathematical characterization of these phenomena i3 not
available. Most of the so called software reliability models attempt, at most, to give a figure for the .
Mean Time To Failure of a software system under some "typical” workioad conditions. As will be seen
in the following sections, the characterization of a "typical” workload is in itseif an important probiem.

One of the more important byproducts of considering a time varying failure rate in which failures
can be due either to hardware transients or software design errors is that the relative contribution of
software to system unreliability can be estimated directly from the history of system failures. From a
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software point of view, the model presented here is more in the line of the idees exposed in
[Littewood 78] in the sense that the concepts of bug identification and elimination should be
separated from reliability measurement. No one cares about how many bugs remain in a software
system if the sytem operates at an acceptable level of performance. The modeling methodology
presented in this report does not give any solution to the problem of improving software reliability
(although it gives some non trivial hints about how that could be done) but gives a method to
characterize the distribution of the time to failure due to software under general workload conditions.

The formal characterization of performance of a digital computing system may be very elusive. As
described in [Ferrari 75), there are no known system-independent and workload-independent
performance indices (two necessary properties to consider a measure a universal measure). But the
average user is only concerned in the elapsed time since a computation is requested and the correct
result is produced. This time will depend on the load of the system, the operating system overhead, on
the probability that the system fails and his particular tagk has to be restarted, and of course, on the
underlying hardware configuration. It is then an important problem to establish formal quantitative
relationships between workload, performance, and reliability.

In summary, this report gives a solution to the mathematical characterization of the relationships
between workload, performance, and reliability due to transient failures and software design errors.
The mathematical analysis developed here can be applied not only to computing systems, but to any
complex systems in which reliability is an important characteristic and for which some knowiedge
about workload variations is available. Since a large class of these systems operate under a quasi-
periodic demand (sucti as public transportation systems, power distribution networks, time sharing
and some real-time computing systems, etc.), the mathematical characterization has been developad
first for systems in which the workload can be characterized by a cyclostationary stochastic process
(a time varying stochastic processes with periodic mean and variance).

In Section 2 the formal assumptions made in the characterization of the failure process of a time-
shared computer are stated in detail. Also, general expressions are derived for the Probability
Distribution Function, Reliability Function, and Hazard Function of the times to hardware failure,
software failure, and system failure when the system overhead is described by a Cyclostationary
process that can be approximated by a periodic function plus a “corrected” zero mean Gaussian
process.

The results presented in Section 2 are elaborated in Section 3 where the failure process of a real
system is studied in detail, and exact expressions are given that characterize the software, hardware,
and system reliability for that partcular system. in Section 4 these resuits are compared with the
available data regarding the refiability of the system under consideration and with the characterization
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that wouid result from more traditional modeis such as constant failure rate (time to failure expontially
distributed), Weibull, and periodic fallure rate. Finally, in Section 5, a fist of items to be further
investigated is proposed, along with some prefiminary conclusions. Two mathematical derivations
particularly tedious have been left t0 appendices 8o not to distract the reader with cumbersome
detalis that are not relevant to the ideas presented in this report.
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2. Mathematical characterization

This Section gives the mathematical basis of a model able of predicting and calibrating the
unreliability of digital computers due to hardware transients and software errors. First, the necessary
definitions are given in Section 2-1. The assumptions that the systems to be modelled are assumed to
satisfy are stated in detail in Section 2-2. Iin Section 2-3 a mathematical skeleton is built based on
these assumptions. The result is a general expression for the Probability Distribution Function (PDF)
of the time to system failure. Finally, in Section 2.3. the general procedure for evaluating the maximum
likelihood estimates of the model parameters is outlined.

s A T, TSR RNEES

2.1 Definitions

' A stochastic process {x(t,w); teT, w€Q} is a family of random variables all defined in the same
i probability space $ and indexed by a real parameter t that takes values in a parameter set T called the
index set of the process. The indexing parameter t will represent time in all the processes presented in
this report and T will always be equal to the real line R, that is, only continuous time processes will be
. considered. For each fixed t€R, x(t,w) as a function of w will be a real valued random variable. For
! each W€, x(t,w) as a function of t will be a real valued function of time called a realization of the
process. The set of ail these time functions is called the ensemble of the process.

Definition 1: A counting process {N(t,w); tZto} is a stochastic process having the set
N* ={0,1,2,..,00} of nonnegative integers as its state space.

g For each w€Sd, N(t,w) is a piecewise-constant function of t with jumps at t,(w), ty(w).....t (w), the
§ values of t, ..., t, depending on the realization of the process. Counting processes are always
: associated with point processes, the value of N(t,w) for t <iKt, . being the total number of "points”
generated up to t,_,. All counting processes presented in this report will be associated to failure ]
processes of a given system, the value of N(t,w) for t<Kt, . being the number of system failures ]
detected up to t, .. A typical realization or sample function of a counting process is shown in fugure [

three properties :
1. PriN(ty) = 0] = 1

2. For t . <s<t , the increment N(s.t) = N(t)-N(s) is Poisson distributed with parameter
A()-A(s), where A(t) is a nonnegative, nondecreasing function of t.

3. {N(1):itt,) has independent increments.

{
|
; 21, |
' ' Definition 2: A Poisson process is a counting process {N(t) ; t<t,} with the following N
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Figure 2-1: A nossible sample function of a counting process.

Property 3 is the distinguishing property. It means that for a Poisson counting process, the number
of points in nonoveriapping intervals are statistically independent random variables, no matter how
large or small the intervals are and no matter how distant or close they may be. The function A(t) in
property 2 is termed the parameter function of the process. If A(t) is an absolutely continuous
function of t, it can be expressed as

t
A@) = / A(r) dr 2.1)
b

where A\(r) is a nonnegative function of t for t2t, The function A(r) is termed the intensity function of
the process N(t). At any time t>t,, the intensity function A(r) is the instantaneous average rate at
which points occur. If N(t) is a failure process A(t) is the failure rate of the process.

Definition 3: A Poisson process is said to be homogeneous when the intensity function
A(t) is a constant independent of time.

Definition 4: Whenever the intensity.function A(t) is not a constant but a deterministic
function of time, the corresponding Poisson process is said to be inhomogeneous.

Definition 5: Let x(t) be a stochastic process that is an "outside” process influencing
the evolution of a counting process {N(t);tgto). N(t) is a doubly stochastic Poisson process
with intensity process {A(t,x(t));t>t,} if for aimost every realization of the process x(t), N(t)
is a Poisson process with intensity process function A(t,x(t)).

The process x(t) carries the information about how the intensity process varies, and for this reason
will be also called the information process.
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Definition 6: A stationary process (in the strict sense) is a stochastic process
{x(t),t€T} with the property that for any positive integer k and any points t.......t, and h in
T, the joint distribution

{x(t )yenen k()
is the same distribution of

Intuitively, a process is stationary if it has the same joint statistics regardiess of where the time
origin is set. Hence, if x(t) is a stationary Gaussian process, the joint distribution function of

of h.
Definition 7: The Autocorrelation function Rxx“v'z) of a process x(t) is defined as

R (tt) = E{x(t,)x(t))}

= j P xit,) .x(:,)(“v"z) da, da,

where E{..} stands for expected value and p,, )x(tz)(“v"z) is the joint probability density
function of x(t,) and x(t,). L

If x(8) is stationary and real, R_(t,.t,) depends only on the time difference r = |t,-t,| and

R (1) = E{x(t+ 7)x(t)}
Definition 8: A stochastic process x(t,w) is ergodic in the most general sense if all its
statistics can be determined from a single realization x(t,w,) of the process.

Loosely speaking, a process is ergodic if time averages (the only ones that can be obtained from a
single realization of the process) equal ensemble averages (i.e. expected values). Obviously,
ergodicity can be defined with respect to certain parameters of the process. Only ergodicity with
respect to the autocorreiation function will be needed in this report, which is defined as follows :

Definition 9: A stochastic function is ergodic with respect to the autocorrelation
function if

r
Ralr) = Troo /T x(t + )x(t) ot

it ergodicity of the autocorrefation function is satisfied, the autocorrelation function can be
estimated by computing the above integral for a finite record of a single realization of the process x(t).

Definition 10: A real valued, cantinuous time stochastic process is defined to be a
cyclostationary process with period T if and only if

et T
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1. E{x()} = E{x(t+M)}
2. E{x(t)x(8)} = E{x(t+ TIx(s+T)} Vst

that is, it is a stochastic process with periodic mean and autocorrelation functions.

Definition 11: A doubly stochastic Poisson process will be said to be a cyclostationary
Poisson process it its information process is cyclostationary.

In summary, and as a short introduction, this report summarizes the results obtained by assuming
the failure processes of Time-Sharing computing systems to be characterized by cyclostationary
Poisson processes.

2.2 Basic assumptions made in the characterization of failure
processes

First, the behavior of failures in Time-Sharing computing systems will be characterized. Since the
occurrence of failures is random, a necessary requirement to understand the process of how a lack of
reliaBility affects the performance of a system is to find an expression for the probability density
function of the time to failure.

2.2.1 Characterization of the failure process

The approach taken has been to assume that the different subsystems failure processes can be
accurately modeled by cyclostationary Poisson processes. Although it is common in reliability theory
to assume that failure processes are property modeled by Poisson processes, one may well wonder
why this assumption leads to good results. There are at least three reasons for characterizing failure

processes with Poisson processes.

First, the conditions for a Poisson process are very likely to be valid for many physical
environments. Qualitatively, these conditions can be summarized as follows :

*Two failures cannot occur simuitaneously.

* At any time, there exists an instantaneous failure rate at which failures occur per unit time
and such that the value of this instantaneous failure rate is independent of the past
history of the system.

*the number of failures at start time is zero.

(see [Sneyder 75] for a formal proof that the above are sufficient conditions for a process to be
Poisson). If this "instantaneous” failure rate is a constant, the above three conditions define a
homogeneous Poisson process, for which the interarrival times are independent and exponentially
distributed random variables. If the failure rate is a deterministic function of time, a nonhomogenous
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Figure 2-2: Average number of biccks accessed in the file

system as a function of time of day.
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Figure 2-3: Disks failures as a function of time of day.
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Poisson process is defined. Finally, if the failure rate is another stochastic process, the above three 3
definitions define a doubly stochastic Poisson process. g

The second reason for using a Poisson process is that whenever we have a point process that is the
result of pooling the points of many independent point processes ( whatever their characterization 3
may be), and the component processes are sufficiently sparse, the pooled procuss converge to a ]
Poisson process [Cinlar 72]. This is certainly the case of modem digital computing systems. The
complexity of a minicomputer like the PCP-11/40 [Bell 78b) in a minimal configuration of 64 Kbytes of
memory, clock, and a terminal interface is on the order of 10° IC packages. For an supercomputer like
the CRAY-1 [Russell 78], the complexity is on the order of 10° IC packages. The average Mean Time
To Failure (MTTF) per component is on the order of 10°% hours (~ 10° years) for hard failures {Hodges
77]). Hence, the system failure rate due to transients is the superpcsition of ~103 failure processes,
the probability of observing a failure of any of the component processes in a meaningful time interval
is very small (of the order of 10 for a month interval). The fact that the superposition of sparse point
processes converges to a Poisson process guarantees that, independently of the characterization of
each of the component processes, the system failure process will be very close to a (non necessarely
homogeneous) Poisson process.

Finally and most importantly, even if system characterization by means of Poisson processes is only
approximate, these processes are very well understood and fairly complex mathematical tools exist.
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Figure 2-4: Number of blocks accessed per unit time in a file
system during five consecutive weekdays (millions of blocks
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Figure 2-5: Average fraction of time in kernel mode, K{t), as a
function of time of day.
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Figure 2-8: System failures (restarts) as a function of time of ;
day. 1
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That a doubly stochastic Poisson process should be used (that is, the failure rate being another
stochastic process) is a fact suggested by the data presented in Figures 2-2 thru 2-6. Figure 2-4
shows the values of the number of biccks read and written to the file system of a time-sharing digital
computing system during five consecutive weekdays. There is a clear (although nondeterministic)
periodicity in this data .Note, for instance, that there is always a peak after a new day is started. This
peak is due to the backup of disks to magnetic tape, which the operator does daily after midnight. If
we average the data for these five days and piot the profile for the average disks use in one day we
see that there is a common time varying pattern for all days (Figure 2-2). If we now examine the one
day profile of disks failures detected during the same period of time in Figure 2-3 we note a
remarkable similarity between the two plots. Although different, the plots in Figures 2-2 and 2-3
present the main peaks ancd valleys at approximately the same time of day. It seems that in the long
run, after averaging over a one day period both the failure rate and the system usage variables show
the same temporal behavior. If such a dependency exists instantaneoulsy, that is, if the failure rate at
a given time depends on the system load at that time, it is clear that the failure rate must be
characterized as a stcchastic process, since the load variations presented in Figure 2-4 cannot be
considered deterministic.

Figures 2-5 and 2-8 show the average fraction of time in kernel mode for a Time-Sharing system and
the number of crashes detected during 29 days, both plots as a function of time of day. Again, there is
some simlilarity between the two plots. The fraction of time in kernel mode for a Time Sharing system
during five consecutive days, shown in Figure 2-7 suggests a cyclostationary process.

Figures 2-2 thru 2-6 should be enough evidence to justify an experiment based on the assumption
that failure rate is a stochastic process. Let A(t) be the value of the instantaneous failure rate at time
t. For a doubly stochastic Poisson process, the probability density function of the time between
failures conditioned to a realization of the process A(t) is given by [Sneyder 75]

t
BE] A(r), 0<T<t) = AQY) e'[ Nrer 22)

2.2.2 Failure rate characterization

Based on the arguments in Section 1, it will be assumed that the instantaneous value of the failure
rate for a particular resource is a nondecreasing function of the "utilization" of that resource. For
instance, more failures per unit time will be detected in a file system when the number of blocks read
and written to the disks per unit time is near its maximum value than when it is used only occasionally.
The fact that system crashes occur more often in periods of high load has been noted in [Butner 80).
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Figure 2-7: Fraction of time in kernel mode, k(t), during five
congecutive weekdays.

The exact nature of the functions relating resource utilization and failure rates may be complex,
different for each resource and difficult to characterize from observed data. Since no previous
experience has been reported of working under these assumptions, a cautious approach will be taken
and, as a first step, only linear refationships will be considered. In generat then, the failure rate A(t) of
a particular resource whose use is characterized by a function u(t) will be given by

Ait) = au(t) + b (2.3)

where u(t) will be a function such as the ones shown in Figures 2-4 or 2-7. For instance, the failure
rate of a file system J\dk(t) will be given by

Age® = 84 b + Cyy (2.4)

where b(t) is equal to the sum of blocks read and written to the file system per unit time as shown in
Figure 2-4. s, is a sensitivity coefficient relating disks usage to failure rate and the offset term ¢,
should take care of any possible drift in the relation between usage and failure rate.
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The system failure rate, that i, the rate at which the system crashes and has to be restarted from
scratch is not so obviously characterized. The protection mechanisms provided by the state of the art
operating systems and computer architectures try to maintain continued system operation regardless
of individual component or subsystem failures. The fact is that in most computers the CPU executes in
one of several processing modes, each of the modes having different privileges respect to the overall
system control. A system crash due to a hardware transient is only possible when it affects the
operation of the system in the most privileged mode, the only one able of haiting the entire system or
entering into an infinite loop with no other entity capable of correcting the situation. This most
privileged mode of operation is usually referred to as the kernel/, and the system failure rate should be
a nondecreasing function of the fraction of time that the system operates in kernel mode, that is,

Ap® = 8 kD + G, i (25)

where Ash(t) is the system failure rate due to hardware transients, s,  is a sensitivity coefficient, k(t) is
the instantaneous value of the fraction of time that the system operates in kernel mode and ¢, is a
residual, workload independent, failure rate (even if the kemei is only slightly exercised there is the
possibility that a transient in the main mamory will corrupt parts of the kernel data structures).

The system failure rate due to software errors will also depend on the fraction of time that the
system operates in kernel mode because the kernel of the operating system is the only software
capable of leading to a system crash. However, when the workload is very low, and the kemei
executes only relatively simple operations it is to be expected that this part of the kernel will be well
debugged such that the system failure rate is zero for low values of k(t). it will then be assumed that
the software failure rate will be zero for values of k(t) below a threshold value k, and increase with k(t)
above k. Again, the relationship between k(t) and failure rate will be assumed linear such that

8, k(D -8 ko k(D)
Au® = Lo o auwl:.;

(2.6)

where A\ sb(t) is the system failure rate due to software errors, Sen is its sensitivity coefficient, and "o is
the value of k(t) below wich this failure rate is zero. A”(t) can be rewritten as
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)\a = s”[k(t) -k} "n"o (2.7
whers
) KO o K
: KO = { 5 cerie
(2.8)

The following expression can then be obtained for the system failure rate, that is, the rate at which
the system crashes due either to hardware transients or software errors

N i st

" %

Ay () = [8,, + 8, Jk(t) + cp, -8, R(t) -8, K, (29)

Only these three cases (the failure process of a file system, the system failure process due to
transients, and the system failure process due to software errors) will be studied in this report.
Expressions for the probability density function of the time to failure and reliability function for the
three cases are given in Sections 2-2 thur 2-4,

2.2.3 Workload characterization

Something more can be said about the "utilization” functions. Although being nonstationary
processes, it is obvious that due to the operational policies that regulate the use of Time-Sharing
systems, they will have a periodic behavior. The second hypothesis that we make is that workioad,
and hence system usage for time sharing systems can be modeled as a cyclostationary process
[Gardner 75], [Gardner 78]. A cyclostationary process is defined as a second order process with
periodic mean and autocorrelation function. The periodicity of the mean is obvious from Figure 2-4
and in fact it is possible to make the simplifying assumption that the workload causing such overhead
can be described by a periodic (hence deterministic) function of time. This is the approach taken in
[Butner 80], where it is expected that a periodic failure rate Poisson process will iead to a more
accurate failure process characterization than a homomgeneous Poisson process model (time to
failure exponentially distributed). Here, the instantaneous value of the failure rate will be considered a
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random variable with periodic mean, and the failure rate will be a cyclostationary process. The third
hypothesis is that u(t) (the usage function of a particular system resource) can be properly modeled
by adding a deterministic, period function of time m(t) plus a stationary, zero mean, Gaussian process.
That is,

u(t) = m(t) + 2(t)

such that in general

(2.11)

AM) =am(t) + az(t) + b

where m(t) is a periodic, deterministic function of time and z(t) is a stationary, 2ero mean, Gaussian
process, independent of m(t). This third hypothesis, aithough attractive, cannot be correct. If z{t) is a
purely Gaussian process, there is a non-zero probability that A(t)<0 and the above expression cannot
be used as a failure rate of a Poisson process. To avoid this problem let

0 otherwise

70 = {

u(t) = m(t) + z(t) - Z(t)

from where we obtain

AfD) = alm(t) + z)-Z0] + b

= am(t) + b + afz(t) - (1))

In summary, the three hypothesis in which this work is based are :

1. The failure process of a digital computing system can be described by a doubly
stochastic Poisson process.

L e T R
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2. The failure rate is a linear function of the operating system overhead (so, indirectly,
depends on the system workioad)

3. For computing systems with cyclostationary workload, system overhead time variations
can be modeled as a periodic, deterministic function of time plus a stationary, zero mean
Gaussian process, independent of the underlying periodic function and adequately
corrected in order to have a positive failure rate.

Note that assumption one is much less restrictive than the usual assumption of considering the time
between failures being exponentially distributed (i.e., the failure proceas is usually considered a
< homogeneous Poisson process). In later Sections, the insight gained in understanding system
! behavior from dropping this oversimplification will be discussed. Also, the implications of conaidodng
{or not considering) assumptions 2 and 3 will be discussed. .

R

2.3 Characterization of a file system failure process

As a first application of the hypothesis described above, the failure process of a file system under
cyclostationary workload will be studied in detail. The hypothesis are that the subsystem failure rate is

k given by

i AT (AR A AT, L RPT  DTT  ies

J\dk(t) =8, bt) + Cax

BO) = My (8 + 2, (8- 2y (0 . 217

The pdf of the time to failure conditioned to a realization of the process Ag(t) is given by

t
- A
Pal LR (Tt STSH = AL (D e /.; i

The general pdf is given by

‘ t
Pglt) = E{Adk(t)e'/,; A(riT 2.19)
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where the expectation is taken over the ensemble realizations of the process A ,(t). it is shown in the
Appendix | that, under the assumption that A (1) is given by (2.14), the above expectation is equal to,

2 g1 . . Cu -
Pyt = __g_{ byt o 2 P * o Pdu"w"m”'} 2.20)

The meanings and values of each of the parameters on which p(t) depends are described in detail in
Appendix |, and only a summary wiil be given here. ¢ (1) is a periodic function of time, depending on
the periodic component of A . (t). The first term in the exponent is the variance of the integral of z (1),
and depends on the autocorrelation function of z (1), R_(r). The last term depends on the mean
value of the deterministic part of A ,(t) and the correction factor p, (8y.D.,) takes care of the
contribution of Z,, (t). Finally, it should be noted that this expression is only valid when the second
derivative of the autocorrelation function of z ,(t) at the origin ig finite.

The following expression can be obtained for the Probability Distribution Function of the time
between errors :

4
Pdk(t(ﬂ = / p(t) dt | o2
0
o 2 oo
) ¢""(°)°.dk 2 - ¢ag(f)0""‘ 2 Bok™ak * Sak Pak®ak OmiellT (2.22)
2
= 1- Plr) ea:" 2 Bk PaxaxOminl)T (2.23)

To compare our model with a real system we still need to estimate the parameters s, and c, from
observed data and obtain analytical expressions for the autocorrelation function R (r) and the
variance o2(t) in equation (2.23). The general problem of parameter estimation for doubly stochastic
Poisson processes is described in Section 2-5, and a numerical procedure for estimating s, is given
in section .

2.4 The system failure process

The expression for the system failure rate due to hafdwm transients and software errors has been
given in (2.9), where k(t) is the fraction of time that the system operates in kemnel mode. With the
hypothesis that
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kit) = m"(t) + zsy(t) . 2’y(t) (2.24)
(2.9) can be rewritten as
Agy® = I8y, + 8, JIm () + 2, -2, (0] + ¢\ -8, 7, 0-8,% (2.25)

m s z(t) + Ky HZHCK,-m

An additional assumption has been made here, that k . <k <m,__ .. That is, it is assumed that the value
at which the failure rate due to software failures starts being nonzero (k) lies somewhere between the
minimum value of the periodic component of k(t) (M) and the minimum value of k(t) (Kpyn): The
reason for this assumption is that only in this case a closed t(;nn expression can be found for the pdf
of the time to system failure. Whether this assumption holds or not in a real system is checked later in

the report.

Again, the pdf of the time to system failure is given by
t .
- A Td '
pe( = E{ A0 e.[o ("9} (2.26)

Using the resuits of Appendix |, the following expression is obtained

2
D.y(t) = - ba.{ ¢”(t’ e(‘gw + "’W)z..lz.‘!L [(3“ + shw)msy + Chw'Psy(Sw + ‘hw'k ““)-psy(g"lko)]‘ } 2.2
t

and the following expression is obtained for the PDF of the time to system failure
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' (s +sm)2‘—2m[(s 8 IMe + O P (B * SnuKmin) * PayBaw’ o7
P‘y(t(r) =1 '¢,y(")° sw 2 w & W TsyTsw  hwiminT TayTsw (2.28)

Again, to completely characterize the failure process of a real system, the values o/ 5_, . sy, T Ko
need to be estimated from the history of failures of the system.

2.5 Parameter estimation

The general problem of parameter estimation for doubly stochastic Poisson processes can be
stated as follows. Let {N(t):t,} be a doubly stochastic Poisson counting process with intensity
At.z(t),X), where z(t) is an stochastic process and X = (X,.X,,.......X,) i8 & vector of unknown
parameters. The occurrence density function that a given realization of the process has a failure at
time {f if it has been started at time {3 is, given by

|
PAIX.2(r) taCr<t) = A(H.2(0,5) -'[, Airaimid)ar (2.29)

it we obesrve n failures at times ff,,......tf, with associated starting times ts,.......ts,, the probability
density function of obeerving such set of events is

(2.30)

Y
POt ...t JK z(r)tmrctt, Vi) = TI, , Presy Actt, 2.3 o'[,l Nz ler

whereP(ls.)ismeapﬂoryprobabimymatmesystemismmdatﬁmets‘.Takingmeexpecuﬁonwiﬂ\
respect the statistics of z(t) we can obtain,

Y
DOt .11 [Rts,.t8) = E{ [T, , Pets) Act,2).9 e'/_‘l Mran3er ) (231)

The maximum likelihood estimate X = (x| X,,........x;) of of X in terms of a particular realization of
the process is by definition the value of X that maximizes the above density function [Meisa 78). That
is, P, .ot [Kit8, 1 = 1......,1) will be maximum for X' = K. in the cases presented in this report,
closed form expressions have been obtained for the pdf of the time to failure. They are all of the form
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o) = hitt) o> | 2.32)

the function to be maximized is then
R — ) H:'_ 4 P(ts) h(tf),%) e“‘"‘“‘j’ 2.3y

Note that this problem is equivalent to minimazing the function

I®) = Do, Hith b8, %) - 21, Infh(t, )] (2.34
subject to the constraints
htt,X)>0  i=1,..,n (2.35)

Since closed form expressions for the components of X at the minimum are not generaly available,
this is a typical nonlinear programming problem, subject to nonlinear inequality constraints. Since this
problem will have to be solved every time that the failure process of a resource has to be modeled for
a real system, particular care has been taken in finding an efficient procedure for the location of
minimums of functions of the type (2.34). In Appendix I, this procedure is described, along with
detailed descriptions of all the functions for which it has been used in the evaluation of maximum
liketihood parameters.

2.6 The implications of a workload dependent model in
sofmare reliability evaluation

A general methodology for characterizing system reliability in terms of resource utilization functions
has been presented in the previous sections. First, the "typical” measuring conditions have been
generalized to a situation in which workload patterns ars mapped into resource utilization functions,
modeled by cyclostationary processes. Second, by considering the kernel of the operating system as
a system resource, an integrated hardware/software reliability model has been built. The assumption
is that the system failure rates due to hardware transients and software errors depend on the kemel
utitization process. Third, since the functional dependencies of the failure rates due to hardware
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transients and software errors with respect to kernel utilization are different, it is in principle possible
to evaluate the relative contribution of each failure rate to the unreliability of the total system.

Once the general functional dependency between failure rate and kernel utilization has been
established, all it is needed to completely characterize a real system is to evaluate the maximum
likelihood values of the function parameters. But all it is needed to evaluate the maximum likelihood
values of these parameters is a history of sysiem faifures. Hence, the contribution of software to
system unreliability can be evaluated just knowing the times of a set of system failures, without
needing any information about how the kernel has been written, let alone how many bugs remain in it.
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3. Failure process analysis of a real system

In order to verity that the assumptions stated in Section 2 lead to a better modeling of failure
processes than other models, an experiment was designed. The experiment consisted in the
adquisition of data concerning both the tailure process and the use of a general purpose time sharing
system. The system choosen was the CMU-A, a PDP-10 used by the Computer Science Department at
Carnegie-Mellon University as the main general purpose computational tool. The system consists of a
KL-10 processor, one megaword of memory, eight disk drives totalling 1600 megabytes of online
storage and two magnetic tape drives. The system runs a slightly modified version of the standard

. TOPS-10 operating system [Bell 78a].

The software packages used to instrument the experiment are illustrated in Figure 3-1. Information
about failures is obtained from an online error log file maintained by a system program, which records
the information produced by ditferent error formatting routines. Entries are made to this file for each
hardware error detected in the system, for system reloads, for disks performance statistics, and so on
[Digital 78]. The error log is later processed by SEADS, a FORTRAN package which allows to list the
times of detection of errors associated with a particular resource. In order to obtain accurate
information about the use of the system, a special SAIL program, SYSMON, was written that samples
the values of 30 system parameters twice every five minutes, the two samples in a five minutes interval
being one second apart. In this way, 1/0 traffic, system overhead values, etc., can be obtained
averaged on a one second interval or in a five minute interval with a resolution of 5 minutes. The files
generated by SYSMON are later processed by another SAIL package, READSY, which computes the
periodic component and autocorrelation function ot the utilization function of a particular system
resource. The information generated by SEADS and READSY is then processed by an APL package
(POWELL) which estimates the maximum likelihood parameters of the pdf of the time to failure of a
particular resource. Finally, in a separate SAIL package, C2TST, the values predicted by the
cyclostationary model and other models described in Section 4 are compared with the information
stored in the error log according to a x2 goodness-of-fit test.

The operational policies regulating the use of this system at CMU make it a good starting point to
check the validity of the ideas exposed in Section 2. its steady state operation during weekdays can
be understood from Figures 2-4 and 2-7. Recall that this figure plots the sampled values of the fraction
of time considered to be operating system overhead for five consecutive weekdays. The vaiue of the
accumulated overhead time is obtained by executing a Monitor Call and includes the time spent in
clock queue processing, short command processing, swapping and scheduling decisic..., and
software context switching [Digital 77). This value does not include Monitor Calils execution nor 170
interrupt times. It i3 not exactly the time that the system is executing in kernel mode, but it is closs

enough for our purposes.
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PDP-10
(KL- 10)

TOPS-10

YSMON FORMATTING
SYSMO ROUTINES

SYSTEM ERROR-
UTILIZATION LOG

FILES

READSY SEADS
GENERIC /" INTER. |
UTILIZATIO LISTING
FILES FILES
CcHR
POWELL o
?

Figure 3-1: Software packages used in the validation of the
cyclostationary modeling methodology.
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3.1 Probability Distribution Function of the Time to Failure of
a File System

Figure 2-2 shows the results of compiling five days of disk utilization samples into a single 24 hour
period. Along with the estimated average, this figure shows the function my, (t) obtained from a finite
Fourier series expansion (see Appendix | for detailg). A Fourier series expansion is a least squares fit
to our data and is a good way of eliminating the "noise” present in the estimated average due to the
finiteness of the sample. The data in Figure 2-2 corresponds in fact to the function m dk(t) in Section
2.3. after sampling its values every five minutes. After substracting from b(t) the value of M g (1), the
sampled values of the process zdk(t) are avaliable for estimation of its autocorrelation function.

)

o
O
)
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0.02

0.02

0.01
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| 3 6 a2 a8
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Figure 3-2: Estimated and approximated Autocorrelation
functions of the file system utilization process.

Figure 3-2 shows the estimated autocorrelation function for the process z,(t). From its
appearancae, it seems that an autocorrelation function of the form

Bt

R,(t) = a1°-ﬂ,ll| + aze. @.1)

would be appropiate to approximate the real autocorrelation function. The noisy appearance of the
estimated autocorrelation function is again a consequence of the finite sample size available for its
computation. The main problem in the evaluation of the a; and 8, is that they are, in principle, very
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sensitive to the sampling interval (in this case, 5 minutes). In the Appendix Ili, the exact procedure
followed to evaluate them is described in detail.

With the autocorrelation function given in (3.1), the following expression is obtained for the
variance o(t) :

t ] t .
az(t) = 2a, / (t-f)epfr dr + 2a, f (t-'r)epz‘r dr 3.2
0 0
- 2[-3- =1t %[‘ o] Ez[ o] (3.3)
B,

and substituting (3.3) in (2.23) we obtain,

g i Byt 52
{a, -0 -0 t- 1 1-e
Pyu(i<r) = 1- g (r)e ok kT’ a2 b Bz B! 3.4
where the following constants have been defined
% = SanMax + Cax * Pax(SakPmin) 3.5
a
o = 5o s
[ 4
Tqa ™ 3133,‘ @n
2
The hazard function is given by
Bt -Bot 09 4 (T)

The statistics of the time to failure for a doubly stochastic Poisson process when the intensity
process is a cyclostationary process are then equivalent to the statistics of a non homogeneous
Poisson process with hazard function given in (3.8). Although impressive, this hazard function
reduces to a constant term plus a periodic component plus an exponentially decreasing term. Note
that neglecting the periodic componant, this hazard function is exponentially decreasing with the
following extreme valuea
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Figure 3-3: Hazard function of the equivalent non homogeneous
Poisson process characterizing the statistics of the time to tfailure
of a file system.
hy(0) = ay, (3.9)
hi(®) = @y = Oy~ T pn (3.10)

as shown in Figure 3-3.

3.2 The Probability Distribution Functions of the Time to
System Failure

The periodic component of the kernel utilization process, msy(t), has been shown in Figure 2-5,
Figure 3-4 shows the autocorrelation function of the process zw(t). suggesting again an

approximation of the form given in (3.1). The following expression is then obtained for the PDF of the
time to system failure

{ay, ey, B e, B
Py (KKT) = 1-¢"(¢)9‘°sv Tay1 a2’ ":‘1'“* 1 B, e %)

(3.11)
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Figure 3-4: Estimated and approximated Autocorrelation
functions of the kernel utilization process.
a,, = (s”-l-shw)ﬂlsy +Cp, - p”(s“+shw,kmn) - psy(s“,ko) 3.12)
a 1
Ty = E‘-(s“+shw)2 (3.13)
a 2
Ogr = ?:-(s“-n-shw) 3.14)
The hazard function is given by
Bt B 39,(7)
hy,(7) = a‘y-c"1[1 e 1) -cm[1 o' ?] ~;i—(—ﬂ—5';— (3.15)
: "
3.3 Simplified expressions for known starting time
All the expressions given in Sections 3.1. and 3.2. have been obtained after computing the

expectation for all possibie values of the starting time in & one day period. If the system starting time is _
known, different expressions are obtained. The only differences between the PDF of the time to failure 1
with known starting time and the PDF averaged over a one day period is that the function ¢(r) ‘
becomes a constant equal to one and that the a term in the exponential is slightly different. In

particular, for the case of the file system failures,
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¥ : B 1t 'ﬂ 2‘

‘. Py Krits) = 1-@ @ gk (0" g O gier Tawat- JL" ok ﬁa By e 3.16)
f where P, (X|ts) is the probability that a fanlure will be detected before time r + ts given that no failure
‘ had been detected at time ts, and

s @ g = Sy My (r +13) - M (t3)] (3.17)
;j; ""dk * Cyy - pdk(sdk'brun) (3.18)
Q t

_ Mdk = / mdk(') dr (3.19)

1 o

The hazard function for known starting time is

£ . : Bt .

: hylrits) = s, My (8 +7) + a”y 0y, L1-0" " ]-0g,L1-0 B 2] (3.20)

Similar expressions can be derived for the distribution of the time to system failure.

! 3.4 Distribution functions of the time to system failure due to
J software and of the time to system failure due to
| hardware transients

Once the values of 8, 8, .. C, .. K, are known, it is straightforward to derive an expression for the
POF of the time to system failure due to hardware transients. Repeating the derivation described in "
Section 2.4. with 8y = kg =0, the following expression is obtained »

LT %

8, (3.21)

Py (r) = 1- 9, (r) @ ™ Thwt’ Tt Gt .8,

2mritn x-ful.vn«::‘a..nﬂa‘hu:.‘,, - on 5
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., smmw +C,” psy(shw'knin) (3.22)
Opy = :-11-3‘2“ (3.23)
Oz ‘-‘;f (3.24)

In the general case, to obtain the PDF of the time to system failure due to software errors, a similar
equation to (3.16) would be obtained, but with the following parameters

Qg = Sy My - Py (SeKiin) = Poy(Sguiko) (3.25)
T = 7‘;-:-35‘, (3.26)
O = -;zasg, @.2n

Note that if the system failure processes due to software errors and hardware transients are
considered to be nonhomogeneous Poisson processes, each with a PDF ot the form (3.16), the
superposition of both pracesses (i.e., the process obtained by adding the hazard functions of the
software failure process and the hardware failure process) is not equal to the total system failure
process, whose PDF is given by (3.11). This is because they are not statistically independent. Indeed,
both failure processes have a common cause, the utilization process of the kernel of the operating

system.

Table 3-1 gives the maximum likelihood values of 8, Shw' Cpy 8Nd Ky for the CMU-A, along with the
valueofmw. Note that since the value of K, is larger than . expressions (3.22) thru (3.25) may not
be vaiid. The correction term P(8,,, ko) has been computed assuming that K°<<<m'y, condition that the
maximum likelihood value of K, does not verify. In fact, if K°>m" the probability density function of
the time to failure due to a software error degenerates into an exponential, such that

P, (Kr) = 1.0 orsw'o” (3.28)

the PDF of the time to system failure due to hardware transients being given in (3.21).

Figure 3-5 shows the relationship between the instantanecus value of the system failure rate and
the software and hardware components. Note how the software failure rate is zero for a wide range of
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Parameter Value
8, 0.158
S 0.086
Chw 0.0079
ko 0.225
mw 0.19

Table 3-1: Maximum likelihood values of the coefficients

defining the relationship between kernel utilization and system

failure rate.
values of k(t), but that its slope is larger than the slope of the failure rate due to hardware errors.
Figure 3-5 thus suggests that to agsume a linear relationship between the system failure rate due to
software errors and kernel utilization may be an oversimplification. In fact, it seems reasonabie to
expect the probability of observing a software error to increase with the length of time that the
software is exercised and with a "stress” factor depending on the apparent compiexity of the input
data to be processed at a given time. In this case, perhaps a higher degree polynomial would better
describe the relationship between the software failure rate and software utilization.
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. Figure 3-5: Relationship between the system failure rate and its
software and hardware components.




!
|

Mmoo n

|
|
i

TP orcr ot dprin -veis = s g o o L L

DISCUSSION 39

4. Discussion

Although the assumptions made in Section 2 are less restrictve than the usual assumption of
modeliing the failure process with a constant failure rate, the validity of the methodology ﬁresented
here can be agserted only by comparison with- the behavior of a real system and contrasting the
results that would be predicted by traditional models. This is the subject of Section 4.1., where the
results given in Section 3 are compared with the values predicted by assuming either an exponential
distribution, a Weibull distribution, and a periodic distribution for the time to failure. in section 4.2. an
explanation is given for why the apparent failure rate is decreasing, and finally in Section 4.3. some
prefiminary conclusions are summarized.

4.1 Comparisons with other modeis

The more widespread model used to characterize the failure process of digital computers assumes
the failure process to be a homogeneous Poisson process. The PDF of the time to failure is then given

by
AT
Pli<r) = 1-0 © - (4.9)

where A, is the (constant) failure rate. The maximum likelihood estimate of A, is obtained simpy by
dividing the time that the system has been operational by the number of failures reported. All
functions and parameters related to this model will be noted with subindex "e" and from now on this
model will be referred to as the exponential model.

However, empirical studies [McConnel 79a], (Wagoner 73] have shown that a Weibull distribution
gives much better goodness of fit to experimental data than a simple exponential. The Weibull PDF is

given by

. a
P Kr) = 1-0" W (4.2)

The Weibull distribution is characterized by two parameters : A, , the scale parameter, and a , , the
shape parameter. For a = 1, the Weibull distribution degenerates to the exponential. For a >1, the
Weibull distribution has an increasing failure rate. A decreasing failure rate corresponds to a <1. All
reports published to date claim that a decreasing failure rate Weibull distribution fits experimental




e

“War -

I R St

D A o T o el

-i{
i

40 WORKLOAD, PERFORMANCE, AND RELIABILITY OF DIGITAL COMPUTING SYSTEMS

data much better than a plain exponential model. Numerical procedures have been developed to find
the maximum likelihood estimates of A and a . These procedures are based on the works of
[Thoman 69, Berger 74, Romano 77] and FORTRAN programs implementing them are given in
[McConnel 79b).

A workload dependent mode!l has been presented in [Butner 80]. A linear dependency between
failure rate and workload is also assumed. The workload is characterized by a periodic function of
time. The PDF becomes an exponential "modulated” by a periodic function

-Fpup('r)

KT
P(Kr)=1-¢ P e (4.3)

where Fp is defined as the load induced failure rate and U(T) denotes the instantaneous load value.
This model will be referred to as the periodic model, all its parameters having the subindex "p". Using
the notation developed in Section 2, this is equivalent to assume an ‘utilization function u(t) = m(t),
wherg only the periodic component is taken into account, and where the Gaussian process z(t) has
been neglected. In this case,

: t
pit) = E{Ap(t)e'[o Aotrir - (4.9)

where
J\p(t) =s,mM) +c, (4.5)

P(X7) = 1- e'("’".‘ * T eh én (4.6)

Note that (4.3) and (4.6) are equivalent. In Section #1.5. the equations for computing the maximum
lykelihood values of S, and S from a history of failures are given.

Finally, the mode! presented in this report will be referred as the cyclostationary model. An
expression for its PDF is rewritten here
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Measure resource Assume h(t)
utilization functions to be of the form
predicted by
the cyclostationary
model
|
Comoute perodtc Campute masimom
Autocorrelation likelyhood values ,
function of parameters -‘
Obtain h(t)
‘.Compute maximum
likelyhood values
of coefficients
from a history of
failures
Obtain h(t)

Figure 4-1: Two alternatives to characterize system reliability.
The maximum likelihood values of the hazard function
parameters can be evaiuated from the resource utilization
functions or directly from a history of failures.
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[+ 4 .B T o _p T
P(Kr) = 1-e'(a°’°°‘”°2"'79£1l["° 1]'7’?[14 ) vt pim) @.n

Table 4.1. summarizes the densities, Reliability and Hazard functions for each of the four models.
Note that the cyclostationary model has both an asymptotically decreasing failure rate and a periodic
component. Qualitatively, the cyclostationary model seems to integrate the approaches of the Weibull
and periodic models. Note also that, for the case of a file system failures, only two parameters need to
be estimated from a history of system failures (sdk and cdk), the other parameters in equation (4.7)
being measured from the actual system behavior (the periodic component and the autocorrelation
function of the resource utilization process). Since the cyclostationary model suggests a PDF of the
form shown in (4.7), it is conceivabie to postulate (4.7) as the real POF of the failure process and
estimate the values of a, 0., 0., B,. B, directly from a history of failures, therefore avoiding the
measurement of the resource utilization functions. Figure 4-1 describes these two alternatives
available to characterize system reliability. In Section 11.3. the equations used to estimate the values
of these parameters drirectly from a history of system failures are given.

The fifth distribution in Table 4.1. is a simplified version of the distribution obtained with the
cyclostationary model, considering only one exponential in the hazard function, and neglecting the
periodic component ¢(r). Section 11.4. gives the equations for estimating the maximum likelihood
parameters of this distribution from a history of system failures.

Next, quantitative comparisons using data of a real system are in order. Table 4-2 show the resuits
of applying a x2 goodness of fit test between the actual failures observed in the file system described
in section 3.1. and the distributions predicted by the above four modeis. A x2 value smaller than X?).os
(i.e., a level of confidence greater than 0.05) indicates a good fit between predicted and observed
behavior and suggests the acceptance of the hypothetical distribution as the real distribution
underlying the failure process.

As can be seen from Table 4-2, only the cyclostationary model (both with direct and indirect
evaluation of its maximum likelihood parameters) show a good fit with experimental data. Neither the
axponential nor the periodic failure rate modeis seem to be able to describe the failure process with
significant accuracy. The simplified cyclostationary model distribution and the Weibull distibution are
almost in the border line of acceptance. Further insight can be gained by direct comparison of the
hazard functions of the above four models. Figure 4-2 shows the hazard function of the above four
models for the case of file system failures.
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Table 4-3 shows the results of applying a x2 goodness-of-fit test to the four models in the case of
system failures. Note that for the periodic model, the maximum likelihood values of the coefficient are
such that the proportionality term vanishes, and the constant term equals the A value of the
exponential model. Although all models give a level of significance larger that 0.05, the
cyclostationary model is again clearly superior giving levels of significance of 0.9. The hazard
functions of the four modeis for the case of system failures are given in Figure 4-3.

4.2 The decreasing hazard function paradox

Tha hazard function found in the cyclostationary model presents the following paradox : neglecting
the periodic component, expression (3.15) means that no matter at what time we start observing a
system, the statistics of the time to failure are equivalent to the statistics of a non homogeneous
Poisson process with decreasing hazard function. Since the hazard function is roughly the rate at
which failures will be detected, this means that no matter at which time we start observing a system
the apparent rate at which failures are detected will be a decreasing funtion of time. In this section,
the reason for such surprising behavior is investigated and explained.

To understand the decreasing hazard function paradox, start with the simplest possible case.
Assume that the real failure rate is given by a constant plus white noise.

Ay = m + x,(t) (4.18)

where m is the (constant) mean failure rate and x,(t) is a stationary, zero mean Gaussian process with
autocorrelation function

R, (1) = Zistn)  (419)
™ 2

and

i/n 0<r<h
u -
8r) = plo Lo Dh

Assume that m>W, such that the probability of J\“(t) being negative can be neglected. The
probability density function of the time to failure is then given by
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g .
; Exponential
Ry(r) = &0 @8)
i hy(r) = A, (4.9)
]
d
3 A7) %W
j Ryr)=e (4.10)
. h,(7) = Mf— (4.11)
% (Awt) Oy
1 Periodic
1
1} Ry(r) = N (4.12)
|
‘ hotr) = [A, + F2url ] (4.13)
3
# Cyclostationary
‘ 1‘ c Bt o BT
2 vg.+ =Sl g 1. 82 11.e 2 )
} R (r) = e-(Ac O + 0T 3 f1-e '] B, [t-e € ]+ind(® (4.14)
3
" B
Simolified Cyclostat
g ye- o P
R(N=e ™M g e ™1 (4.16)
™) = ap - vl1 -] (4.17)

Table 4-1: Reliability and Hazard functions of the five compared
modeis,
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Model Parameter Degrees of x2 value X305 Level of
Values Freedom i Confidence
Exponential | A, =0.67 7 130 14.067 0
Weibuit

Periodic

Cyclostat.

14.00 8 8.69 15.07

0.36

Cyclostat.
(Direct)

Simplified
Cyclostat.

a, =169

04 =1.38

B, =1.38

Table 4-2: Results of a x2 goodness-of-fit test with the
Exponential, Weibull, Periodic, and Cyclostationary models for file
system failures. Only the Cyclostationary model gives a level of
confidence greater than 0.0¢ The Weibull and simplified
cyclostationary models give smaller leveis of confidence but close
to 0.05. The hypothesis that the time to failure can be
characterized with Exponential or Pericdic models has to be
rejected. The data used was obtained from five weekdays of
system operation during which 877 (transient) failures were
detected. The MTTF value i8 7 minutes. The file system is
composed of 8 RPO6 disk drives totalling 1600 megabytes of on
line storage.
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Figure 4-2: Hazard functions predicted by Exponential, Weibull,
Periodic, and Cyclostationary models for file system failures.
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Model Parameter Degrees of x2 value X305 Level of
Values Freedom ’ Confidence
Exponential A o = 0.0073 8 7.87 15.507 0.45
Weibull Aw =0.0074 7 7.95 14.067 0.35
a, = 0.98
Periodic Sp =0.0 - - - -
cp =0.0073
Cyclostat. Sgy = 0.158 5 1.61 11.070 0.9
¥ = 0.0889
Cru = 0.0079
ky = 0.0357
Cyclostat. | a, =0.013 5 1.68 11.070 0.9
(Direct) | o, =0.0054
0, =0.0080
By =021
B, =0.0041
Simplified a, = 0.014 6 0.7% 12.592 0.9
Cyclostat. | o, =0.0064
_ B, =0.21

Table 4-3: Results of a x2 goodness-of-fit test with the
Exponential, Weibull, Periodic, and Cyclostationary models for
system failures (crashes). Aithough all models give a level of
confidence larger than 0.05, the Cyclostationary model shows a.
better fit to real data. Note that for the Periodic model the
maximum likelihood values of the coefficients is such that the
proportionality coefficient vanishes and the constant term is equal
to the A value of the Exponential model. The data used was
obtained from 29 weekdays of system operation during which 60
failures were detected giving a MTTS (Mean Time To reStart)
value of 11 hours.
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Figure 4-3: Hazard functions predicted by Exponential, Weibull,
Periodic, and Cyclostationary models for system failures.
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P L
pyt) = -2 (e ‘e 2 ) (4.20)

where ¢2(t) is the variance of the integrated process

o) = W, / t(t-f) 8(r) dr (4.21)
0
=Wt (4.22)
such that
o0 = -2(e™e") (4.29)
Pcr) = 1.0 " (4.24
hyr) = m:-:w1 (4.25)

This failure process is equivalent to a homogeneous Poisson process with an apparent hazard
function not equal to the mean failure rate, but equal to the difference of the mean failure rate minus
the "power” of the noise, W,. The reason for that is that the failure rate appearing in the exponent of
an exponential, variations above the mean failure rate are not equally weighted with variations below
the mean. In fact, the variations below the mean value are more heavily weighted, and hence the
resulting smaller limiting failure rate when the expectation is taken over all possible realizations of the
failure rate process. '

Assume now that the real failure rate is equal to a constant plus a zero mean, stationary Gaussian
process

A ) = m + x,) (4.26)

but that now the autocorrelation function of the Gaussian process is given by
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Bir

R, (1) = %o o .20
In this case,
o) =2t [1-67] (4.28)
B g2
Defining
W, = .g. (4.29)

the following expressions are obtained

. BT
pz(t) .. .éat_ ( o mt ewzt p [1-6 ] ) (4.30)
. W, -Br
P,(Kr) = 1.e Mg e ! (4.31)
r. B ‘
hyr) = m-W,[1-¢" ] (4.32)

This failure process is then equivalent to a non homogeneous Poisson process with an
exponentially decreasing hazard function. For r =0, the apparent hazard function is equal to the
mean real failure rate, m. For r = 00, the apparent hazard function equals the same value that had
been obtained assuming the Gausian process to be white noise. And as 7 increases, the failure rate
approaches this limiting value exponentially.

Finally, note that if W, = W,, the system with white noise utilization process will be more reliable
than another system having a utilization process with autocorrelation function given by (4.27). In the
case of white noise, the system reaches the minimum value of its hazard function at t = 0, while for an
autocorreiation function of the form (4.27) the minimum value is approached exponentially. Hence a
non ckvious way of increasing the reliability of a particular resource would be to build a system such
that the utilization process of that resource approaches white noise as much as possible.
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4.3 Preliminary conclusions

It has been shown how the cyclostationary model is capable of predicting the reliability of a Time-
Sharing system in steady state operation. Workioad dependency is stated explicitely in the model, by
means of resource utilization functions. System reliability is evaluated in terms of utilization of system
singularities (i.e., the Kernel of the operating system). And, in general, resource reliability is evaluated
in function of the utilization of each resource.

e M Yol T o B L e

Sofware and hardware reliability can be evaluated separately merely by observing a history of
system failures and some knowledge of how the system behaves (periodic mean and autocorrelation
function). A linear relationship between software failure rate and software utilization has given
somewhat contradictory results, suggesting that perhaps more complex relationships need to be
considered. In any case, it has been shown how establishing the relationships between software
failure rate, hardware failure rate, and kernel utilization, it is in principie possibie to evaluate the -
contribution of software and hardware to the unreliability of the total system.

R ., S A B i,

Perhaps one of the more important resuits is that the probability density function for the simplified
cyclostationary model (having a single exponential in its haz>rd function) has a known Laplace
transform, making it suitable for Markov modelling. Neither the compiete Cyclostationary, nor the
Weibull, nor the Periodic modetls lead to probability density functions with known Laplace transtorms.

From a user viewpoint, there is a reinforcement effect between workioad and lack of reliability.

k., Higher workioad implies that the Kernel of the operating system has to take more decisions per unit

1 time, increasing the probability of a system failure. Hence, not only the user receives less CPU cycles ;
per unit time, but the probability that these cycies will become useless because the job will have to be

restarted also increases.

Hence, high reliability seems to be in contradiction with other performance measures (such as the
maximum number of jobs allowed to be simuitaneouisy active).

But the contradiction between reliability and other performance measures seems to be of a deeper
nature. In [Spirn 77] several paging algorithms are described and modelled. Page tfaulting in a virtual
memory system can be described as a stochastic process, and a usual optimality criteria for paging
algorithms is how well they are able to perdict future system behavior given past and present system
behavior. This is exactly the information given by the autocorrelation function, and in [Spirm 77)
several paging algorithms are compared in terms of how well their predictions fit the autocorrelation
function of a real page faulting process. But in Section 4.2. it has been shown that a way of improving
reliability is to have white noise as the resource utilization process. For white noise, the future values

. A T
YA P smamwen - -




A

o i

W e ML OGRS

WAL S ey e

82 WORKLOAD, PERFORMANCE, AND RELIABILITY OF DIGITAL COMPUTING SYSTEMS

of the process are completelly unpredictable no matter for how long has the system bheen observed
and no matter how closas in the future is the prediction desired. Hence, for an optimally reliable paging
system, its utilization process should be white noise. Since future system behavior wouki be
unpredictable, an optimum paging algorithm under these conditions would just swap out of memory

pages at random, therefore lowering system performance.
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5. Proposed research

5.1 On the linear dependency between overhead and failure
rate

The first topic to be investigated in depth would be the real dependency between overhead and
failure rate. A linear relationship has been assumed for the cyclostationary model, and any other
relationship may lead to hopelessly complex mathematical problems in the evaluation of the
expectation of the modified Gaussian process. However, there is always a possibility that other
dependencies may be more accurate, and even if exact expressions for the distribution of the time to
tailure cannot be obtained for dependencies other than linear, errors due to a linear relationship
assumption should be understood.

Since a failure cannot be detected if the system is not used, the only a priori assumption that seems
reasonable is that the failure rate must be a non-decreasing function of the system overhead. What
needs to be known is for what ranges a linear dependency is accurate, what are the confidence
intervais that can be obtained, and to explore the possibility of characterizing the failure rate with
relationships other than linear if necessary.

5.2 Generalization to systems showing a non-cyclostationary
behavior

One of the fundamental assumptions made to develop the cyclostationary model has been that the
system overhead could be approximated by adding a periodic function to a modified Gausian
process. This may be a good approximation for time-sharing systems, but it certainly does not apply to
many real-time and command and control systems. In fact, the highest demand for high availability
systems comes from special purpose command and control systems like the ones to be installed in
aircrafts, migsiles, satelites, and so on. For some of these systems, the workload can be modeiled by a
sequence of load states. if the exact sequence is not known in advance but the possibie alternatives
are known, the instantaneous value of the mean workload could be modeled by a semi-markov
_ process {Howard 71}

The cyclostationary model would then evolve to a model in which the instantaneous mean failure
rate is not a periodic function of time, but a random variable whose statistics depend on the mission to
accomplish. This new model would have, in addition, the ability to incorporate the effect of permanent
hardware faifures, transient hardware failures, and software failures. In fact, most performance-
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reliability models presented to date just assume that in the presence of a permanent hardware failure
the system reconfigures itself and continues to operate with a possibly different computational
capacity. Whether the capacity diminishes or the workload increases, the result will be a system
operating in one of a set of possible states for a given period of time.

5.3 Characterizing total system performance

Present reliability evaluation tools, such as Reliability or Availability, are feit to be innadaquate due
to the large gap that separates say, the Availability of a computing facility and the cost that has to be
paid due to of lack of reliability. Digital computers are used {0 store and process information, and the
sooner the desired information is available, the better the system. The occurrance of a system failure
means waiting until operation is restored, bringing the machine to a consistent state, possibly
restarting computations that were interrupted because of the failure and (if possible) updating the
system with the information it was supposed to process while it was not operational. In short, it means
a delay in obtaining the desired information and an added cost associated with the extra
computations related to restoring the system to the desired state after the failure occurred.

From a single user viewpoint, a failure also means a delay. in [Castillo 80] the expected eilapsed
time required to complete a program was computed under rather restrictive assumptions, but
separating the "useful” time that leads to program completion from the “useless” time due to fack of
reliability. Hence, a possible extension of the methodoiogy presented in this report wouid be to try to
caracterize the cost associated with lack of reliability from the resource utilization functions of each
system resourcs.

5.4 System design optimization criteria derived from this
model

Finally, it has been described in Section 4 how reliability seems to be in contradiction with other
performance indicators. If it is assumed that the performance of a digital computer can be
characterized by a vector, each component measuring a different aspect of performance (for
example, throughput, execution rate, reliability, storage capacity, etc.) the arguments exposed in
Section 4 seem to indicate that it is not possible to raise the value of all these components at the same
time (except by enforcement of fault-intolerance in each resource). Hence, it seems in principle
possible to look for the optimum performance point, as the point in which the system operates in a
state in which a cost function associated with each performance measure is minimum.

[
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. The cyclostationary Poisson process

!
I
;
!
!
1

The problem is to obtain an expression for the pdf of the time to failure of a doubly stochastic failure
process

t
o(t) = E{Mt)e'[ Amery (1.1)

where the time origin is assumed to be t=0 and

A) =au{t) + b

= am(t) + b + az(t) - aZ(t) (1.2)

4 m(t) being a periodic function of time, z(t) a stationa y Gaussian process independent of m(t), and

, 0« {20 10
(1.3)
i
‘ Define
t
Aq) = / A(r) dr (L4)
(]
It is shown in [Saleh 74] that since i
-l .
Alt) X A(t) (1.5)
(1.1) can be rewritten as

i
L]
P
1
3
§
3
i
i

’
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o) = E{ -%}ﬂk'm]

.. 53,{ {e-A(t)}

t
M(t) = m(t) dt

t
) = z(t) at

- t
Z(t) = Z(r)dr

The problem reduces to evaluating the expectation

E { e-[aM(t) + aZ(t) -.i(t) + b] }

or, since m(t) and z(t) are independent, the problem is equivalent to evaluate

£ {e-aM(!) - bt} E {e-[al(t) . ti(l)l}

1.1 The deterministic part

Let us examine now the first expectation. m(t) is a periodic function of time. However, the time
origin is, in principle, unknown. The probability density function (pdf) given here is going to be
compared with the estimated pdf of a real system. In an observed pdf, each system failure will be
associated with a time origin corresponding to the moment at which the system was started. However,
if the failure rate is a time-dependent function, it.cannot be assumed that the system will be started
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with equal probability at any time during a one day period. in fact, the system will be started more
often in the periods of time in which it fails more. Since m(t) is precisely the periodic component of the
4 failure rate,

v+t
T -
e{e™} - / mo(u)e/u ™ (13)
1]

whehe m,(t) is m(t) after normalizing to have area one in a one day period,

2 my(t) = ——Tm—— (1.14)
| / m{7)dr

0
“ and T is the period of m(t).
‘ i To evaluate the expectation in (1.13), m(t) will be approximated by a finite Fourier series expansion.
¥

m) = @+ 2_, ¢ sin(nut + ¢_) (1.15)

o

o
-

- where the following constants have been used
¥ = 22 .
L & = ) (1.16)
:é
T .
l M= J—/ m(t) dt (1.17)
! T
' o
172
f c, = (@2 + b (1.18)
2
@, = arctan 1 (.19)
T
a, = -?- / m(t) cos(nwt ) dt (1.20)
°
T
b, = / m(t) sin(nwt ) dt (1.21)
(]
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‘ Taking into account this approximation, we can obtain another representation for M(t). First, note ‘
that "f
T+t
N ac
/ m{v)Jdv = amt + Zn=1 —n_wL[ cos{nwr + (pn) -cos(nw(r +t) + 1pn) ] (1.22)
T
4 i = amt + g,(t7) (1.23)
- where g,(t.r) is defined as
‘ N ac
,1 g,(t7) = Zn=1 ;w—"[ cos(nwr + @ ) - cos(nw(r+t) + @) ] (1.24)
3 -aM(t) + bt
: E{e o }can now be written as
- T
-aM(t) + bt -(am + bt ~g.{t,T)
| o™ "™} .Y [ my(re *e"" ar (1.25)
- 0
: . (am + bjt
: = ¢,(te (1.26)
-
|
where
X T
-9,(tT)
E | B,(t) = / my(rle * dr (1.27)

is also a periodic function of t.

1.2 The stochastic part

The problem is now to compute

£ { eall(t)-l(t)l } 1.28)

i
;
j
i
i
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Since z(t) is a zero mean Gaussian process, aZ(t) will be another zero mean Gaussian process with
variance (see [Papoulis 65), pp. 323-325)

t pt
o?(t) = 2a? / / R, (t,t,) dt.dt,
0 ‘0

where Rzz(t1 -tz) is the autocorrelation function of the process z(t). If in addition z(t) is stationary,

t t
a¥(t) = 2a° / / (t-7) R, (1) dr
[+ I

The main problem in the evaluation of (1.28) is the evaluation of the st~tistics of the process Z(t) after
integration, that is, the statistics of the excess area of a Gaussian process above a given level ¢ in [0,4]
(see Figures I-1 and I-2). The problem of level crossing for Gaussian processes has been extensively
treated in the literature. In particular, in [Stratonovich 67] this problem is studied in detail, and
expressions are given for the duration of peaks above a given level, and the excess area under such
peaks. This is exactly what is required. The following is a summary of Chapter 1-3, Vol Il, of
[Stratonovich 67]. The derivation will only be outlined here with remarks on the assumptions used
and the resuits obtained.

Figure I-1: A possible realization of z(r)-Z(r)
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Figure 1-2: A realization of Z(r). The shadowed area corresponds
to the integral of Z(r) from O to t, Z(t) .

i(t) is a random variable whose exact statistics may be impossible to compute. its value for a given
realization of the process z(t) is equal to the addition of the excess areas of all peaks of z(t) above a
level c. It is shown in [Stratonovich 67], p. 59, that if the duration of the peaks is much smailer than the
time between peaks, the time between upcrossings (downcrossings) can be approximated by an
exponentially distributed random variable. The probability of having k peaks in [0,t] is then given by

e Al T

‘o D udista i

g a
e — -

P(n=k) = -(113'-‘- e (1.31)

where 7 is the mean number of peaks per unit time. In the case of a stationary Gaussian process, 7 is
given by ( [Stratonovich 67], p. 7)

2
R 2 ¢
7= _2’;_3202 (132)
where
3%r_(7)
R, = -—35%— ]ho : (1.33)
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R R

These expressions are valid only for "smooth” processes. Qualitatively, the smoothness condition
means the z(t) must be differentiable and close to a straight line segment during a sufficiently small
time interval. In the case of Gaussian processes, this condition means that R_,(r) must have a finite
second derivative at the origin. Assuming that this condition is satisfied, it is required now to
characterize the excess area under each peak.

W N K

If the duration of peaks is small and the process is smooth, the second derivative of z(t) can be
considered constant over the duration of a peak, the peak can be assumed to be of parabolic shape,
and the excess area depends only on the value of the first derivative of z(t) at the time of crossing the
level c. Under these assumptions, the following expression can be abtained for the probability density
function of the area under a peak ( [Stratonovich 67], Vol |l, pp. 68-72)

SEGE ' oara W AS TR a5 e« e S i

2
2 3 L R®y)V24123
x L] 1/2 -1/3 2'23
ple) = - = 0 17 s13e 2" 2,

(1.34)

The value of i(t) is given by

(1.35)

where each of the s; has density given in (1.34) and k is another random variable with density given in
(1.31). An exact evaluation of (1.28) would require knowledge of the joint probability density function of
Z(t) and Z(t). Since this impossible to obtain, the approximation will be made that

2 = k Efs] | (1.38)

where k is the number of peaks in [0,t] and E[s] is the mean peak area. In this case, Z(t) and i(t) are
independent random variables and

E { eﬂ(i(t) -Zm) } = E { 9lli(t) } E { e-aZ(t) }

Since Z(t) is a zero mean Gaussian variable with variance ¢2(t) given in (1.31),
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o -GZ(I) .13‘“.

e{o 2"} - T e @202y dZ(H) (1.38)
27 "“ot) V.00
|2!2m ‘
e 2 (1.39)
and
oZ 0
(e} - T Pnakie (1.40)

n(e'ﬂ’ld)t
=@

(1.41)
- "N (142)

where p(a,c) is the correction factor
plac) = nte 1) (1.43)

Note that both  and E[s] depend on the value of the level ¢. The value of E[s] can be computed from
(1.34).

Efs] = _a‘L";Dm_ (1.44)
el
g
- —2121!'—’-’— (1.45)
-:;(R 2)1/2

If aE[s]<<<1 (that is, if the value of ¢ is much larger than the variance o?), the approximation can be
made that )
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H o = 1 4 aE(s] (1.46)
§ Substituting now (1.46) in (1.43)

| p(a,c) = anE[s] (1.47)

Substituting now (1.32) and (1.45) into (1.47) a simpler expression is obtained for p(a,c)

3 / 172 -cz— |
plac) = ATITR )2 (1.48)

) where o2 is the variance of z(t), and ¢ is the level below which z(t)-Z(t) must vanigh.
1.3 Example

‘- If z(t) is a zero mean Gaussian process with variance o2 and autocorrelation function

R () = R (1.49)

‘ the expectation in (1.40) cannot be evaluated beacuse the second derivative of (1.49) at the origin does
3 ' not exist. However, (1.49) can be approximated by the following equation

§ R = 1—:3%2—[9’8' 1o %] (150)

provided that fcﬁ<<<1. In this case, the variance if the integrated process becomes, according to
(1.30)

s iy
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' -
a(t) = 202 / (t-1) eﬁf dr
0

2 2 -Bt
. 2-%—t-3;;-[1 o' ] (.51)

and the expectation (1.11) becomes

2 2 Bt
{af + b-plac) - 2> t--f—z-n-epj

e 3 (52)

and p(a,c) is given in equation (1.48). The fact that the term (R,)'/2 cancels in the approximated value

of the correction factor p(a,c) has an interesting physical meaning. R'_(t) is the autocorrelation
function of the Gaussian process that would be obtained at the output of a low-pass filter with
bandiwth 1/7_ when its input is the process z(t). The fact that the value of p(a,c) is independent of R,
means that the area generated under the peaks of z(t) per unit time is independent of the bandwith of
this filter. The area generated per peak diminishes for higher bandwith, while the number of peaks per
unit time increases with the bandwith. Fortunately, these to effects cancel each other, such that the
area generated under the peaks per unit time remains a constant, independent of the process
bandwith.
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PARAMETER ESTIMATION

Il. Parameter Estimation

As it has been described in Section 2.5., the problem that has to be repeatedly solved in this report
is that of finding the minimum of a function of the form

IR) = 2y, Hth18,8) - 2o, Infh(tf, %)) w1
subject to the constraints
h(tf,X)>0  i=1,..n (.2)

where n failures of a resource have been observed at times tf,, after observing the system since ts,.
Take, for ingtance, the case of the distribution obtained from the simplified cyclostationary model

presented in Section 4.1..

-Bt
. a-y-X1[1-
o) = [a-vir-e?1] o E ) n.3)

Given a history of n failures represented by a set of pairs [ts|,tfi] i=1,...,n the maximum likelihood

values of a,y,8 are these values that maximize the function

X “~B(¢,-b,)l

ot 15ttt ) = L1, [a-yi1-aP 002 ] o 1@ P00 (1.4)

or, equivalently, they are the values wich minimize the function

a,v.B) = 2y ¢ (a-y)H-AS) + 2, 2o P [yt s

subject to the constraints
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1) a0
2 B20
3 y20
494 a-y>0 (1.8)

Although this is a typical nonlinear programming probiem for which general methods are available
(see, for example, [Bazaraa 79]), the problem of minimizaing functions like (Il.5) present two
peculiarities. First, every time that the function has to be evaluated it requires to compute the sum of n
terms, n being the number of observed failures. In the case of the file system described in section 3.1.,
the number of observed failures in five days of system operation is 877. Hence, function evaluation
(or gradient evaluation) is computationally expensive and an efficient method will be needed.

Second, although several efficient methods are known for minimization subject to nonlinear
inequality constriants, these methods usually assume that the constraints are external to the
mathematical statement of the problem, and that the objective function can in fact be evaluated
outside the constraints. This is not the present case. The fourth constraint in (11.6) must be satisfied
plainly because the objective function (il.5) does not exist unless its parameters satisfy this constr- int
(in the sense that the logarithm of a negative number does not exist). Indeed, the fourth constraint
says that the hazard function must be positive, and a solution that does not satisfy the fourth
constraint in (11.6) invalidates the existence of the objective function itseif. Hence, minimization
algorithms that require the evaluation of the objective function outside the constraints cannot be
used.

For this reason, the first algorithm to be used to find a minimum of functions of the type (Il.5) was
the gradient projection method of Rosen [Rosen 60). This algorithm follows a steepest descent
direction until one or several constraints are violated, projecting then the gradient on the subspace
defined by the active constraints. This method has proven to be very slow with the functions tested in
this report. After some experimentation, the fastest algorithm found has been a slightly modified
version of a variable metric algorithm proposed by Powell [Powell 78]. The original Powell algorithm
occasionally requires the evaluation of the objective function outside the constraints and has been
modified such that the maximum step size at each iteration never leads to a point outside the
constraints. The modified algorithm converges more siowly that the original Powell algorithm, but for
all the cases in this report, the minimum has been found in less than 30 iterations, which is a very
good rate of convergence given the functions under consideration.

The algorithm has been implemented as an.APL package that requires the definition of the
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objective function, the gradient of the objective function, the constraints and the gradients of the
constraints. The following sections desfcribe each function in detail, providing a notational dictionary
consistent with the programs used.
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Il.1 File System Failures (Cyclostationary Model)

Function to be minimized

USgCai) = Z:‘si Sa[M(tf)-M(ts)] + z:‘n [Cdk‘ P(S gy Ormir) 'sﬁk[i;i"%:'l](‘fi"%)
+ Zi=1 sdk ~L [1 Bty u‘)]
+ Zi=1 sdk -2 [‘ 2(“‘.”]

- Z:‘n In [sak"‘("u) + Cyy = P8 D)

where
a2 172 "m.z
s .(a,+a (m/2) -
Pax (S Prrue) = s iz e Aa,+ay)
bnin
Deftinitions
n
K1n = M(th)-M(ts)) Ky = 2-'—\|.1 K1l

Ka,'“l"l K, ’::‘1'(2‘
K’-‘l —J{1 Sak 2] Ky = Elﬁ Ks,
1-03""‘%] K4-Z..1 Ke

Bz
N " Y2 02 "uua
- n
Ky = L - B ea+ay

Smin
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Xy = Sy

Xy = Cyx

Objective Function

I(X) = x,K, + [x2~x1K6-xf[-gJ- +=21] K, + xf[fl + 51-]
By B By~ By

Zi1ln[xK + Xy X,Kg ,[K +Kﬁ]]

Gradient
2 LK - 3 H, 2 K, 5
el L [ s Ik, +2x,[ A ﬁz]
3 Ks,"‘e'z" (K3 - K
in?
)(1K5i + x5 [K3‘+K4‘]x,
n
1
-aaxL - K2.25-1 2
2 )(1K5i + %y x,Kg- [K3i+K‘i]x1 |
Constraints i

C,®) = x,>0
Cz(f) % X,20 ;

C,(X) = x min{K

Su) + %4 - X Kg - X3[max{K, + K‘l}] >0

3,

Gradient of the constraints
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s,
3x2

C.
= min{Ka) - 2x, max{K, + K.}
1 ] i
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I1.2 System Failures (Cyclostationary Model)

Function to be minimized

8 S S ) = Dy 1 S5y MIEE)-MtS,)]
+ Z:‘ﬂ [chw = P(SgyKmin) - P8, Ko) - s:y[_;—:-. %:']] (tf-ts,)

. Z 8 “1 [ p1‘“i"‘i)]

+ Z: 1 sy [1 _e-Bz(tfi-tsi)]
2

-2 (e m) + ¢y, - Sy, Kpie) - P8 ko)

22 '51“’3"’9 2 @ . B
%7 184, g2l -e 1]

Sey * Sew * Shw

Definitions

K, = M()-M(ts)

2[ = tf-tsl
—[1 oP i 3]
e 8
3 1-e 22]
2

K5| = m(tf)

X =8,
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X3 = Shw
X, =Ko
K¢ as defineu in Section IL.1.
3/2 172 "42
(a,+a (m/2) -
K_, = 1 2) e 2.>(l!1 +a2)
%
Objective Function
N a a
IR) = (x, 4 XK, + [ x3- (%, + x)Kg = XK, - (%, + X2 g +§f-]] K,

+ (x1+x2)2[-;—1 + -;4]
1 2

2o [, # XKy + X~ 0+ X)Kg - X,k =y + Ky + K‘i]]

Gradient
a a K‘
'aa;'; = K1'K6K2'K7K2'2("1"X2)[7:' + ‘B'z‘] K, + 2(X1+X2)[—;3:- + -E:]
3o K5, "Kg~ K7~ 24[Kg + K,
b1 (x1<t~)(2)Ksl + XXy +x0Kg - )(1K.,-[K3|+K‘i](x1 +x2)2
Bk k-2 o) oL 22Tk, e 2k e xg)[ SR+ o
dn, 12T 2)[31 32]2 1 2[3‘ 82]
_Z" KSi'KB -2x1[K3L+ K‘ll

in1

(x1 n(,‘,)K‘,’i +xg x4 +)(2)K6 -x Ky [Kai +K‘*](x‘ +x2)2
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.
b Lo n 1
: %3 =K,- Za=1

(x, “Z)Kf’i + % Xy +%,Kg - X Ky - [Ksi +K 4i](x1 +x2)2

]+ Zn x1K7[(2/x4) + ()(4/(¢x1 + az))l
(xq +XglKg + Xg-(Xq +xo)Kg X Ky [Ky +K 4i](x1 +xp?
1 ]

U k2 X4
ox, X'K7[x‘ * @+

Constraints

C,(X) = x,>0

C,X) = x,>0

C,(X) = %350
C, (%) = x>0

Cg(X) = (x,+ xz)min{K_,»'} + Xy - Xy + X )Kg = X Ko - (x4 + x2)2[max{K&' +K 41}] >0

Gradient of the constraints

-:-E'—= 8, ij=1..4
y
h —g—°15-= min{K, } Kg - Ky - 2¢, max{K, -+ 4‘}
{

c
— min{Ks‘} - Kg - 2x, max{K

3l+ Kﬂ}
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1.3 Cyclostationary model - Direct Method

Function to be minimized

Ha.01.8105:8) = Z:‘=1 (a-0,-0,)(tf;1s)

L g T i P

) Z'ﬂ in[a- a,(1- eﬁ (lf,-m')] - a,[1 _e-ﬂg(“r".)]]

Definitions

Xy =a X=0, X3=B  x =0, X=P

K2 and K2 as in section .1,
j

Objective Function

HE) = (XXX K, + 23" e 3'(2;]1-—1-2i J1-e "2
*3

DRRLIESA & 2] x[1-075%]]

Gradient
n
1
%’ ’Kz'zln x.K -
1 3Ka, K2,
x1-x2[1-e |]-x4[1-e il
-xsK
2 .k, —1-2,,[1e“|1+§:,, 10 T %
O, : XKy %Ky
Xy -Xg[1-@ i]-x,(1-0 i}
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n -x K X n XK
2.2 ke Al 3 (16702
ox X i=1 2 2 =1
3 3 ! X
3
~x3K2‘
K, @
22,

+ Z:ﬂ

XK XK
x1-x2[1-ex3 2i]-x4[1-e’(5 2!]

D R i D S, N T P Sy v

Constraints
c 1(,’(‘) =x,>0

cz(i‘) =X, -%,>0

; C4(X) = x3>0
‘ Gradient of the constraints
1
4 acl.=1 gclso ac]=0
ox, *a Oxq
‘1, Ea-a 1 -a—c'z-z -1 ac =0
4 ax1 ala ax3
: 3 2 acy §
1 C. C C
__3., 0 —-a-: 0 = 1 E
Ox, ax2 axa {
o
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i1.4 Simplified Cyclostationary Model

Function to be minimized

ayB) = 2oy, e 3) + 20, i Py, 2.0 o [a-qt LePUeN ]

Definitions
X, = a X, =Y Xy = B

Kz, and K2 as in section II.1.

Objective Function.

%) = (xyx)Kp + 52'2:‘.1 [1-6°32. 20 in[x, - %1 -6 ¥%1]
3

Gradient

9
“ xy-xl1 - 3 2]
XK n *3Ky
L .. -—Z,nh-e 372] Ziﬂ 10
Xy -xusl
x1-x2[1 e 1
XK
v n XKy X, n "2"2°x3 %
P PR S SN o e
x3 X j=1 21 2 j=1 i=1 K
X3 x1-x2[1-e 3 2]]

Constraints
C1(i‘) = x,>0

C,(X) = X, -%,>0

Cy(X) = x4>0

PR — )
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Gradient of the constraints
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11.5 Periodic Failure Rate

Function to be minimized

H8,6,) = Dopay S, MUEIMI)] + 20, e (t13)- 2, [ s mt) + ¢, ]

Definitions

X1 -Sp

thcp

K,. Kz- and K\,,l as defined in Section Il.1

Objective Function

I®) = %K, + XKy 2 in[x,Ks + x;]

Gradient

n

i=t x1K5| + %y

%,"‘1'2

%2 = Kz'Z:‘-1‘

1Ksi + %y

Constraints

C,(X) = x, min{Ksi} +%,50
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Gradient of the Constraints
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1. Autocorrelation function estimation

Given an ergodic and stationary process z(t), the problem is to estimate the function
T N
R (7) = 2’:‘00 jr- /; z(t + 7)z(t) dt (.1

For a finite record of observed values z(n), the autocorrelation function is usually estimated using the
expression

R(m = L Z:: 2(i + n)z(i) : )

This estimate is intuitive except for the factor 1/n. Since N-n terms are summed, it seems that 1/(N-n)
would be more exact. in fact (ll1.2) is a biased estimator of the real autocorrelation function. However,
its expected error is smaller than the expected error that wouid be obtained using the (unbiased)
estimator with factor 1/(N-n) [Jenkins 68].

in the cases presented in this report the values of z(n) are not directly observable, In the case of
sampling the values of fraction of time in Kernel mode, what was measured was the average fraction
of time in Kernel mode during the last second, recording a sample every five minutes. In the case of
the number of blocks accessed to the file system, the available samples are the number of blocks
accessed during the last five minutes, also with a resolution of five minutes. The measured values are
not the values of z(n), but the values of the process

n
Z’(n) = / z(t) dt (1.3)

nA

where A equals five minutes or one second, and the available samples of z'(n) are five minutes
appart.

it has been observed that in the two cases studied in this report, the autocorrelation function
suggests an approximation of the form

R, (1) = a1e'B ", aze"a 2 | - (.4

The problem is then to estimate the values of the a,, B, from the observed values of z'(n). If
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Aot (ML.5)

-
Rz.z.(t)aa‘e 1 +a',e

it is easy to show that

S22 O A ML i

leﬂ : (N.6)

BN .
Ru(t) =a,e ™ s a,e

Bla; n.7
o= 2cosh(B,A) - 1) .7

The probiem is then to estimate the values of the a, ﬁi using (11l.2) and the observed values of z'(n),
and yse (111.7) to obtain the values of 8 of the autocorrelation function of z(t).

Unfortunately it has not been possible to follow this procedure. The accuracy of the estimated
autocorrelation function is limited basicly by two factors : the sampling frequency and the length of
the available record, N. Aithough many techniques exist for power spectrum estimation that take into
account these two factors [Oppenheim 75] (the power spectrum is the Fourier transform of the
autocorrelation function), no techniques are available for correcting the estimates of the

d bada Quiden : i e
e - A bt N

autocorrelation function itself.

. if the sampling frequency is comparable to the bandwith of the power spectrum, the power

‘ spectrum estimate may be poor due to aliasing. Under these conditions, the estimate of the
autocorrelation function given by (iIl.2) may take negative values. This is precissely what happens for
the estimated autocorre’ation function of the file system utilization process as shown in Figure 3-2.
For a sampling frequency equal to one, the bandwith of the process would be equal to /21 =0.59, that
is, the sampling frequency is not even twice the process bandwith.

The solution adopted has been to estimate the o, and B, directly from a history of failures as
described in Section 4.1., and to estimate the variance of the process ofz. Since

(11.8)

. q2

™% ta
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a

B,

And knowing o, , B, and o2 , the values of the a, can be computed.

(H1.9)
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